Unraveling the blue paradox: incomplete analysis yields incorrect conclusions about Phoenix Islands Protected Area closure. 

In PNAS, McDermott et al. (1) analyze a 2014–2016 central Pacific fishing surge, focusing on the Phoenix Islands Protected Area (PIPA) inside the Kiribati exclusive economic zone (EEZ). The authors incorrectly attribute the surge to the anticipated industrial fishing closure of PIPA and describe the phenomenon as a blue paradox (i.e., an unintended negative consequence of a conservation policy). However, a broader analysis demonstrates that this surge was unrelated to the closure of PIPA and was due to a strong El Niño event that created a fishing surge across multiple EEZs and high seas, not just PIPA (2).

Adaptation strategies to climate change in marine systems

The world’s oceans are highly impacted by climate change and other human pressures, with significant implications for marine ecosystems and the livelihoods that they support. Adaptation for both natural and human systems is increasingly important as a coping strategy due to the rate and scale of ongoing and potential future change. Here, we conduct a review of literature concerning specific case studies of adaptation in marine systems, and discuss associated characteristics and influencing factors, including drivers, strategy, timeline, costs, and limitations. We found ample evidence in the literature that shows that marine species are adapting to climate change through shifting distributions and timing of biological events, while evidence for adaptation through evolutionary processes is limited. For human systems, existing studies focus on frameworks and principles of adaptation planning, but examples of implemented adaptation actions and evaluation of outcomes are scarce. These findings highlight potentially useful strategies given specific social–ecological contexts, as well as key barriers and specific information gaps requiring further research and actions.

A rapid assessment of co-benefits and trade-offs among Sustainable Development Goals.

Achieving the United Nations’ 17 Sustainable Development Goals (SDGs) results in many ecological, social, and economic consequences that are inter-related. Understanding relationships between sustainability goals and determining their interactions can help prioritize effective and efficient policy options. This paper presents a framework that integrates existing knowledge from literature and expert opinions to rapidly assess the relationships between one SDG goal and another. Specifically, given the important role of the oceans in the world’s social-ecological systems, this study focuses on how SDG 14 (Life Below Water), and the targets within that goal, contributes to other SDG goals. This framework differentiates relationships based on compatibility (co-benefit, trade-off, neutral), the optional nature of achieving one goal in attaining another, and whether these relationships are context dependent. The results from applying this framework indicate that oceans SDG targets are related to all other SDG goals, with two ocean targets (of seven in total) most related across all other SDG goals. Firstly, the ocean SDG target to increase economic benefits to Small Island Developing States (SIDS) and least developed countries for sustainable marine uses has positive relationships across all SDGs. Secondly, the ocean SDG target to eliminate overfishing, illegal and destructive fishing practices is a necessary pre-condition for achieving the largest number of other SDG targets. This study highlights the importance of the oceans in achieving sustainable development. The rapid assessment framework can be applied to other SDGs to comprehensively map out the subset of targets that are also pivotal in achieving sustainable development.

Committing to socially responsible seafood.

Seafood is the world’s most internationally traded food commodity. Approximately three out of every seven people globally rely on seafood as a primary source of animal protein (1). Revelations about slavery and labor rights abuses in fisheries have sparked outrage and shifted the conversation (2, 3), placing social issues at the forefront of a sector that has spent decades working to improve environmental sustainability. In response, businesses are seeking to reduce unethical practices and reputational risks in their supply chains. Governments are formulating policy responses, and nonprofit and philanthropic organizations are deploying resources and expertise to address critical social issues. Yet the scientific community has not kept pace with concerns for social issues in the sector. As the United Nations Ocean Conference convenes in New York (5 to 9 June), we propose a framework for social responsibility and identify key steps the scientific community must take to inform policy and practice for this global challenge.

An appeal for a code of conduct for marine conservation.

Marine conservation actions are promoted to conserve natural values and support human wellbeing. Yet the quality of governance processes and the social consequences of some marine conservation initiatives have been the subject of critique and even human rights complaints. These types of governance and social issues may jeopardize the legitimacy of, support for and long-term effectiveness of marine conservation.

Searching for market-based sustainability pathways: challenges and opportunities for seafood certification programs in Japan.

Over the past two decades, there has been a proliferation of consumer-facing, market-based initiatives for marine conservation—most notably in seafood eco-labels and sustainability certifications. Yet, despite the growing recognition of these initiatives by consumers and retailers in North America and Europe and the (subsequent) acceptance of their role in seafood distribution by fisheries and fish marketing industries around the world, seafood certification programs have thus far made little progress in Japan. Here, the evolution of the three seafood eco-label and certification programs in Japan is examined and insights into the ongoing challenges they face in terms of the domestic supply chain network, consumer preference and their social-cultural attitude toward sustainability are provided. Despite an initial lack of success, seafood certification programs in Japan can be useful in enhancing consumer awareness for fisheries resource conservation and identifying Japanese domestic small-scale fisheries that are already engaged in sustainable fishing practices. A possible pathway for developing an eco-certification program suitable for the Japanese seafood market is provided through integration of environmental and cultural sustainability under the existing certification framework.

Transform high seas management to build climate resilience in marine seafood supply.

Climate change is projected to redistribute fisheries resources, resulting in tropical regions suffering decreases in seafood production. While sustainably managing marine ecosystems contributes to building climate resilience, these solutions require transformation of ocean governance. Recent studies and international initiatives suggest that conserving high seas biodiversity and fish stocks will have ecological and economic benefits; however, implications for seafood security under climate change have not been examined. Here, we apply global-scale mechanistic species distribution models to 30 major straddling fish stocks to show that transforming high seas fisheries governance could increase resilience to climate change impacts. By closing the high seas to fishing or cooperatively managing its fisheries, we project that catches in exclusive economic zones (EEZs) would likely increase by around 10% by 2050 relative to 2000 under climate change (representative concentration pathway 4.5 and 8.5), compensating for the expected losses (around −6%) from ‘business-as-usual’. Specifically, high seas closure increases the resilience of fish stocks, as indicated by a mean species abundance index, by 30% in EEZs. We suggest that improving high seas fisheries governance would increase the resilience of coastal countries to climate change.

Projected scenarios for coastal First Nations’ fisheries catch potential under climate change: Management challenges and opportunities

Studies have demonstrated ways in which climate-related shifts in the distributions and relative abundances of marine species are expected to alter the dynamics and catch potential of global fisheries. While these studies assess impacts on large-scale commercial fisheries, few efforts have been made to quantitatively project impacts on small-scale subsistence and commercial fisheries that are economically, socially and culturally important to many coastal communities. This study uses a dynamic bioclimate envelope model to project scenarios of climate-related changes in the relative abundance, distribution and richness of 98 exploited marine fishes and invertebrates of commercial and cultural importance to First Nations in coastal British Columbia, Canada. Declines in abundance are projected for most of the sampled species under both the lower (Representative Concentration Pathway [RCP] 2.6) and higher (RCP 8.5) emission scenarios (-15.0% to -20.8%, respectively), with poleward range shifts occurring at a median rate of 10.3 to 18.0 km decade-1 by 2050 relative to 2000. While a cumulative decline in catch potential is projected coastwide (-4.5 to -10.7%), estimates suggest a strong positive correlation between the change in relative catch potential and latitude, with First Nations’ territories along the northern and central coasts of British Columbia likely to experience less severe declines than those to the south. Furthermore, a strong negative correlation is projected between latitude and the number of species exhibiting declining abundance. These trends are shown to be robust to alternative species distribution models. This study concludes by discussing corresponding management challenges that are likely to be encountered under climate change, and by highlighting the value of joint-management frameworks and traditional fisheries management approaches that could aid in offsetting impacts and developing site-specific mitigation and adaptation strategies derived from local fishers’ knowledge.

X