The COVID-19 Pandemic, Small-Scale Fisheries and Coastal Fishing Communities

The COVID-19 pandemic has rapidly spread around the world with extensive social and economic effects. This editorial focuses specifically on the implications of the pandemic for small-scale fishers, including marketing and processing aspects of the sector, and coastal fishing communities, drawing from news and reports from around the world. Negative consequences to date have included complete shut-downs of some fisheries, knock-on economic effects from market disruptions, increased health risks for fishers, processors and communities, additional implications for marginalized groups, exacerbated vulnerabilities to other social and environmental stressors, and increased Illegal, Unreported and Unregulated fishing.

Bridging the Knowledge Ocean: A Design Study of Knowledge Translation for the OceanCanada Initiative

In recent years, the research on ocean science has increased noticeably. Given the impact of this research, communities near the ocean may want to enrich their environmental knowledge to ensure our oceans’ future health. However, there is limited accessibility to this research; scientific information that might be publically accessible is often difficult to find and understand without proper background knowledge.

Estimating Global Catches of Marine Recreational Fisheries

Commercial fisheries catches by country are documented since 1950 by the Food and Agriculture Organization (FAO). Unfortunately, this does not hold for marine recreational catches, of which only few, if any, estimates are reported to FAO. We reconstructed preliminary estimates of likely marine recreational catches for 1950–2014, based on independent reconstructions for 125 countries. Our estimates of marine recreational catches that are retained and landed increased globally until the early 1980s, stabilized through the 1990s, and began increasing again thereafter, amounting to around 900,000 t⋅year–1 in 2014. Marine recreational catches thus account for slightly less than 1% of total global marine catches. Trends vary regionally, increasing in Asia, South America and Africa, while slightly decreasing in Europe and Oceania, and strongly decreasing in North America. The derived taxonomic composition indicates that recent catches were dominated by Sparidae (12% of total catches), followed by Scombridae (10%), Carangidae (6%), Gadidae (5%), and Sciaenidae (4%). The importance of Elasmobranchii (sharks and rays) in recreational fisheries in some regions is of concern, given the life-history traits of these taxa. Our preliminary catch reconstruction, despite high data uncertainty, should encourage efforts to improve national data reporting of recreational catches.

Illicit trade in marine fish catch and its effects on ecosystems and people worldwide

Illegal, unreported, and unregulated fishing is widespread; it is therefore likely that illicit trade in marine fish catch is also common worldwide. We combine ecological-economic databases to estimate the magnitude of illicit trade in marine fish catch and its impacts on people. Globally, between 8 and 14 million metric tons of unreported catches are potentially traded illicitly yearly, suggesting gross revenues of US$9 to US$17 billion associated with these catches. Estimated loss in annual economic impact due to the diversion of fish from the legitimate trade system is US$26 to US$50 billion, while losses to countries’ tax revenues are between US$2 and US$4 billion. Country-by-country estimates of these losses are provided in the Supplementary Materials. We find substantial likely economic effects of illicit trade in marine fish catch, suggesting that bold policies and actions by both public and private actors are needed to curb this illicit trade.

Closing the high seas to fisheries: Possible impacts on aquaculture

Consumption of seafood has increased steadily over the past several decades and this trend is expected to continue with projected increases in global population and affluence. Wild capture fisheries catches have likely reached their peak, and therefore any significant increase in future fish supply is expected to come primarily from aquaculture. However, aquaculture continues to rely on wild stocks by using fishmeal to support culture of fed species. Recently, concerns regarding wild fish populations have led to calls for the closure of the high seas (i.e., international waters) to fishing. Such a policy would decrease marine fish catch in the short term while potentially increasing future catch. Here, we assess the potential impacts of closing the high seas to fishing on marine fish catch that goes to reduction into fishmeal. We quantify the potential effects of these changes on the price of fishmeal and profitability of the global aquaculture industry. Not surprisingly, we find a stronger effect of closing the high seas to fishing for high-value carnivorous species such as shrimp and salmonids. Overall, however, our study suggests that the impact of closing the high seas to fishing on aquaculture is likely to be insignificant.

Projecting global mariculture diversity under climate change

Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture’s substantial contribution to global seafood production and its growing significance in recent decades, it is essential to evaluate the effects of climate change on mariculture and their socio‐economic consequences. Here, we projected climate change impacts on the marine aquaculture diversity for 85 of the currently most commonly farmed fish and invertebrate species in the world’s coastal and/or open ocean areas. Results of ensemble projections from three Earth system models and three species distribution models show that climate change may lead to a substantial redistribution of mariculture species richness potential, with an average of 10%–40% decline in the number of species being potentially suitable to be farmed in tropical to subtropical regions. In contrast, mariculture species richness potential is projected to increase by about 40% at higher latitudes under the ‘no mitigation policy’ scenario (RCP 8.5) by the mid‐21st century. In Exclusive Economic Zones where mariculture is currently undertaken, we projected an average future decline of 1.3% and 5% in mariculture species richness potential under RCP 2.6 (‘strong mitigation’) and RCP 8.5 scenarios, respectively, by the 2050s relative to the 2000s. Our findings highlight the opportunities and challenges for climate adaptation in the mariculture sector through the redistribution of farmed species and expansion of mariculture locations. Our results can help inform adaptation planning and governance mechanisms to minimize local environmental impacts and potential conflicts with other marine and coastal sectors in the future.

Subsidizing extinction?

In 2010 world governments agreed to eliminate, phase out or reform incentives that harm biodiversity by 2020. Yet few governments have even identified such incentives, never mind taking action on them. While some subsidies are well studied, such as in fisheries and fossil fuel production, there is an urgent need for the conservation community to study the potential effects a broader array of subsidies have on biodiversity. In addition, we need a better understanding of who benefits from these subsidies. We term this pursuit ‘subsidy accountability’, which is crucial but challenging work crossing disciplines and government ministries. It requires ecologists, forensic accountants, and policy wonks, calculating and forecasting the positive and negative effects of subsidies and their elimination on biodiversity and vulnerable human populations. The Intergovernmental Panel for Biodiversity and Ecosystem Services recently concluded that action on biodiversity loss requires transformative economic change; true action on subsidies is one step towards such change.

Supporting early career researchers: insights from interdisciplinary marine scientists

The immense challenges associated with realizing ocean and coastal sustainability require highly skilled interdisciplinary marine scientists. However, the barriers experienced by early career researchers (ECRs) seeking to address these challenges, and the support required to overcome those barriers, are not well understood.

Input versus output controls as instruments for fisheries management with a focus on Mediterranean fisheries

Article 4 of EU Regulation 1380/2013 on the Common Fisheries Policy (CFP) define ‘technical measure’ as “a measure that regulates the composition of catches by species and size and the impacts on components of the ecosystems resulting from fishing activities by establishing conditions for the use and structure of fishing gear and restrictions on access to fishing areas.” Thus, these are a set of rules that govern where, when and how fishing can take place.

Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries

Climate change can alter conditions that sustain food production and availability, with cascading consequences for food security and global economies. Here, we evaluate the vulnerability of societies to the simultaneous impacts of climate change on agriculture and marine fisheries at a global scale. Under a “business-as-usual” emission scenario, ~90% of the world’s population—most of whom live in the most sensitive and least developed countries—are projected to be exposed to losses of food production in both sectors, while less than 3% would live in regions experiencing simultaneous productivity gains by 2100. Under a strong mitigation scenario comparable to achieving the Paris Agreement, most countries—including the most vulnerable and many of the largest CO2 producers—would experience concomitant net gains in agriculture and fisheries production. Reducing societies’ vulnerability to future climate impacts requires prompt mitigation actions led by major CO2 emitters coupled with strategic adaptation within and across sectors.

X