Incorporate Indigenous perspectives for impactful research and effective management.

Indigenous knowledge and ecological science have complementary differences that can be fruitfully combined to better understand the past and predict the future of social-ecological systems. Cooperation among scientific and Indigenous perspectives can improve conservation and resource management policies.

Potential impacts of finfish aquaculture on eelgrass (Zostera marina) beds and possible monitoring metrics for management: a case study in Atlantic Canada

Eelgrass (Zostera marina) has been designated an Ecologically Significant Species in Atlantic Canada. The development and rapid expansion of netpen finfish aquaculture into sensitive coastal habitats has raised concerns about the impacts of finfish aquaculture on eelgrass habitats. To date, no studies have been done in Atlantic Canada to examine these impacts or to identify potential monitoring variables that would aid in the development of specific conservation and management objectives. As a first step in addressing this gap, we examined differences in environmental variables, eelgrass bed structure and macroinfauna communities at increasing distances from a finfish farm in Port Mouton Bay, a reference site in adjacent Port Joli Bay, and published survey results from other sites without finfish farms along the Atlantic Coast of Nova Scotia. Drawing on research done elsewhere and our results, we then identified possible metrics for assessing and monitoring local impacts of finfish aquaculture on eelgrass habitats. Our results suggest some nutrient and organic enrichment, higher epiphyte loads, lower eelgrass cover and biomass, and lower macroinfauna biomass closer to the farm. Moreover, community structure significantly differed between sites with some species increasing and others decreasing closer to the farm. Changes in the macroinfauna community could be linked to observed differences in environmental and eelgrass bed variables. These results provide new insights into the potential impacts of finfish aquaculture on eelgrass habitats in Atlantic Canada. We recommend a suite of measures for assessment and monitoring that take into account response time to disturbance and account for different levels of eelgrass organizational response (from physiological to community).

Large marine protected areas represent biodiversity now and under climate change.

Large marine protected areas (>30,000 km2) have a high profile in marine conservation, yet their contribution to conservation is contested. Assessing the overlap of large marine protected areas with 14,172 species, we found large marine protected areas cover 4.4% of the ocean and at least some portion of the range of 83.3% of the species assessed. Of all species within large marine protected areas, 26.9% had at least 10% of their range represented, and this was projected to increase to 40.1% in 2100. Cumulative impacts were significantly higher within large marine protected areas than outside, refuting the critique that they only occur in pristine areas. We recommend future large marine protected areas be sited based on systematic conservation planning practices where possible and include areas beyond national jurisdiction, and provide five key recommendations to improve the long-term representation of all species to meet critical global policy goals (e.g., Convention on Biological Diversity’s Aichi Targets).

Global mismatch between fishing dependency and larval supply from marine reserves.

Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.

Winners and losers in a world where the high seas is closed to fishing.

Fishing takes place in the high seas and Exclusive Economic Zones (EEZs) of maritime countries. Closing the former to fishing has recently been proposed in the literature and is currently an issue of debate in various international fora. We determine the degree of overlap between fish caught in these two areas of the ocean, examine how global catch might change if catches of straddling species or taxon groups increase within EEZs as a result of protection of adjacent high seas; and identify countries that are likely to gain or lose in total catch quantity and value following high-seas closure. We find that <0.01% of the quantity and value of commercial fish taxa are obtained from catch taken exclusively in the high seas, and if the catch of straddling taxa increases by 18% on average following closure because of spillover, there would be no loss in global catch. The Gini coefficient, which measures income inequality, would decrease from 0.66 to 0.33. Thus, closing the high seas could be catch-neutral while inequality in the distribution of fisheries benefits among the world’s maritime countries could be reduced by 50%.