Role of communities in fisheries management: “one would first need to imagine it.”

Are coastal communities relevant in fisheries management? Starting from what Svein Jentoft has had to say about the topic, we explore the idea that viable fishing communities require viable fish stocks, and viable fish stocks require viable fishing communities. To elaborate and expand on Jentoft’s arguments, first, we discuss values as a key attribute of communities that confer the ability to manage coastal resources. Turning to power, next we explore why fishing communities need to be empowered by having the opportunity to self-manage or co-manage resources. Third, regarding community viability, we make the argument that (1) rebuilding or maintaining viable fishing communities and fish stocks cannot succeed without first dealing with vulnerabilities, and that (2) the dimensions of vulnerability involve increase/decrease in well-being, better/poorer access to capitals, and building/losing resilience. The idea that healthy fishing communities and healthy fish stocks require one another implies a viable system that contains both, a social-ecological system view. The values embedded in communities enable them to manage resources. Thus, managers and policy makers need to imagine healthy fishing communities who take care of resources, and this positive image of communities is more likely than present policies to lead to viable fishing communities as well as viable fish stocks.

Achieving the promise of integration in social-ecological research: a review and prospectus

An integrated understanding of both social and ecological aspects of environmental issues is essential to address pressing sustainability challenges. An integrated social-ecological systems perspective is purported to provide a better understanding of the complex relationships between humans and nature. Despite a threefold increase in the amount of social-ecological research published between 2010 and 2015, it is unclear whether these approaches have been truly integrative. We conducted a systematic literature review to investigate the conceptual, methodological, disciplinary, and functional aspects of social-ecological integration. In general, we found that overall integration is still lacking in social-ecological research. Some social variables deemed important for addressing sustainability challenges are underrepresented in social-ecological studies, e.g., culture, politics, and power. Disciplines such as ecology, urban studies, and geography are better integrated than others, e.g., sociology, biology, and public administration. In addition to ecology and urban studies, biodiversity conservation plays a key brokerage role in integrating other disciplines into social-ecological research. Studies founded on systems theory have the highest rates of integration. Highly integrative studies combine different types of tools, involve stakeholders at appropriate stages, and tend to deliver practical recommendations. Better social-ecological integration must underpin sustainability science. To achieve this potential, future social-ecological research will require greater attention to the following: the interdisciplinary composition of project teams, strategic stakeholder involvement, application of multiple tools, incorporation of both social and ecological variables, consideration of bidirectional relationships between variables, and identification of implications and articulation of clear policy recommendations.

Adaptive capacity: from assessment to action in coastal social-ecological systems.

Concerns about the social consequences of conservation have spurred increased attention the monitoring and evaluation of the social impacts of conservation projects. This has resulted in a growing body of research that demonstrates how conservation can produce both positive and negative social, economic, cultural, health, and governance consequences for local communities. Yet, the results of social monitoring efforts are seldom applied to adaptively manage conservation projects.

The impact of coastal grabbing on community conservation – a global reconnaissance.

“Coastal grab” refers to the contested appropriation of coastal (shore and inshore) space and resources by outside interests. This paper explores the phenomenon of coastal grabbing and the effects of such appropriation on community-based conservation of local resources and environment. The approach combines social-ecological systems analysis with socio-legal property rights studies. Evidence of coastal grab is provided from four country settings (Canada, Brazil, India and South Africa), distinguishing the identity of the ‘grabbers’ (industry, government) and ‘victims’, the scale and intensity of the process, and the resultant ‘booty’. The paper also considers the responses of the communities. While emphasizing the scale of coastal grab and its deleterious consequences for local communities and their conservation efforts, the paper also recognizes the strength of community responses, and the alliances/partnerships with academia and civil society, which assist in countering some of the negative effects.

Catching sea cucumber fever in coastal communities: conceptualizing the impacts of shocks versus trends for social-ecological systems.

Research on vulnerability and adaptation in social-ecological systems (SES) has largely centered on climate change and associated biophysical stressors. Key implications of this are twofold. First, there has been limited engagement with the impacts of social drivers of change on communities and linked SES. Second, the focus on climate effects often assumes slower drivers of change and fails to differentiate the implications of change occurring at different timescales.

Adaptive capacity: from assessment to action in coastal social-ecological systems.

Because of the complexity and speed of environmental, climatic, and socio-political change in coastal marine social-ecological systems, there is significant academic and applied interest in assessing and fostering the adaptive capacity of coastal communities. Adaptive capacity refers to the latent ability of a system to respond proactively and positively to stressors or opportunities. A variety of qualitative, quantitative, and participatory approaches have been developed and applied to understand and assess adaptive capacity, each with different benefits, drawbacks, insights, and implications. Drawing on case studies of coastal communities from around the globe, we describe and compare 11 approaches that are often used to study adaptive capacity of social and ecological systems in the face of social, environmental, and climatic change.

Social and ecological effectiveness of large marine protected areas.

Large marine protected areas are increasingly being established to meet global conservation targets and promote sustainable use of resources. Although the factors affecting the performance of small-scale marine protected areas are relatively well studied, there is no such body of knowledge for large marine protected areas. We conducted a global meta-analysis to systematically investigate social, ecological, and governance characteristics of successful large marine protected areas with respect to several social and ecological outcomes. We included all large (>10,000 km2), implemented (>5 years of active management) marine protected areas that had sufficient data for analysis, for a total of twelve cases.

Scenarios for investigating the future of Canada’s oceans and marine fisheries under environmental and socioeconomic change.

There is a critical need to develop effective strategies for the long-term sustainability of Canada’s oceans. However, this is challenged by uncertainty over future impacts of global environmental and socioeconomic change on marine ecosystems, and how coastal communities will respond to these changes. Scenario analysis can address this uncertainty by exploring alternative futures for Canadian oceans under different pathways of climate change, economic development, social and policy changes. However, there has, to date, been no scenario analysis of Canada’s future ocean sustainability at a national scale. To facilitate this process, we review whether the literature on existing scenarios of Canada’s fisheries and marine ecosystems provides an integrative, social-ecological perspective about potential future conditions. Overall, there is sufficient national-level oceanographic data and application of ecosystem, biophysical, and socioeconomic models to generate projections of future ocean and socioeconomic trends in Canada. However, we find that the majority of marine-related scenario analyses in Canada focus on climate scenarios and the associated oceanographic and ecological changes. There is a gap in the incorporation of social, economic, and governance drivers in scenarios, as well as a lack of scenarios which consider the economic and social impact of future change. Moreover, available marine scenario studies mostly do not cover all three Canadian oceans simultaneously. To address these gaps, we propose to develop national-level scenarios using a matrix framework following the concept of Shared Socioeconomic Pathways, which would allow a social-ecological examination of Canada’s oceans in terms of the state of future uncertainties.

Scenarios for investigating the future of Canada’s oceans and marine fisheries under environmental and socioeconomic change.

There is a critical need to develop effective strategies for the long-term sustainability of Canada’s oceans. However, this is challenged by uncertainty over future impacts of global environmental and socioeconomic change on marine ecosystems, and how coastal communities will respond to these changes. Scenario analysis can address this uncertainty by exploring alternative futures for Canadian oceans under different pathways of climate change, economic development, social and policy changes. However, there has, to date, been no scenario analysis of Canada’s future ocean sustainability at a national scale. To facilitate this process, we review whether the literature on existing scenarios of Canada’s fisheries and marine ecosystems provides an integrative, social-ecological perspective about potential future conditions. Overall, there is sufficient national-level oceanographic data and application of ecosystem, biophysical, and socioeconomic models to generate projections of future ocean and socioeconomic trends in Canada. However, we find that the majority of marine-related scenario analyses in Canada focus on climate scenarios and the associated oceanographic and ecological changes. There is a gap in the incorporation of social, economic, and governance drivers in scenarios, as well as a lack of scenarios which consider the economic and social impact of future change. Moreover, available marine scenario studies mostly do not cover all three Canadian oceans simultaneously. To address these gaps, we propose to develop national-level scenarios using a matrix framework following the concept of Shared Socioeconomic Pathways, which would allow a social-ecological examination of Canada’s oceans in terms of the state of future uncertainties.

Community-based scenario planning: a process for vulnerability analysis and adaptation planning to social–ecological change in coastal communities

The current and projected impacts of climate change make understanding the environmental and social vulnerability of coastal communities and the planning of adaptations important international goals and national policy initiatives. Yet, coastal communities are concurrently experiencing numerous other social, political, economic, demographic and environmental changes or stressors that also need to be considered and planned for simultaneously to maintain social and environmental sustainability. There are a number of methods and processes that have been used to study vulnerability and identify adaptive response strategies.

X